
Parallel Subgraph Listing in a Large-Scale Graph

Yingxia Shao♯ Bin Cui♯ Lei Chen§ Lin Ma♯ Junjie Yao♯ Ning Xu♯

♯Key Lab of High Confidence Software Technologies (MOE), School of EECS, Peking University
§Department of Computer Science and Engineering, HKUST

♯{simon0227, bin.cui, malin1993ml, jjyao, ning.xu}@pku.edu.cn
§leichen@cse.ust.hk

ABSTRACT
Subgraph listing is a fundamental operation to many graph and net-
work analyses. The problem itself is computationally expensive
and is well-studied in centralized processing algorithms. However,
the centralized solutions cannot scale well to large graphs. Recent-
ly, several parallel approaches are introduced to handle the large
graphs. Unfortunately, these parallel approaches still rely on the
expensive join operations, thus cannot achieve high performance.

In this paper, we design a novel parallel subgraph listing frame-
work, named PSgL. The PSgL iteratively enumerates subgraph in-
stances and solves the subgraph listing in a divide-and-conquer
fashion. The framework completely relies on the graph traversal,
and avoids the explicit join operation. Moreover, in order to im-
prove its performance, we propose several solutions to balance the
workload and reduce the size of intermediate results. Specially,
we prove the problem of partial subgraph instance distribution for
workload balance is NP-hard, and carefully design a set of heuristic
strategies. To further reduce the enormous intermediate results, we
introduce three independent mechanisms, which are automorphism
breaking of the pattern graph, initial pattern vertex selection based
on a cost model, and a pruning method based on a light-weight
index.

We have implemented the prototype of PSgL, and run compre-
hensive experiments of various graph listing operations on diverse
large graphs. The experiments clearly demonstrate that PSgL is
robust and can achieve performance gain over the state-of-the-art
solutions up to 90%.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Process; D.1.3
[Programming Techniques]: Concurrent Programming—Parallel
Programming
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(a) Pattern Graph Gp
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(b) Data Graph Gd

Figure 1: Subgraph Listing Sample

1. INTRODUCTION
Subgraph listing [6] is an operation to find all the occurrences

of a pattern graph in a data graph. Figure 1 shows a square pattern
graph Gp, and a data graph Gd. The goal of the operation is to enu-
merate all the subgraph instances in Gd that are isomorphic with
Gp, such as 21235,21256,22345. This is a fundamental operation
in the frequent subgraph mining, network processing and motif dis-
covering in bioinformics [22]. Moreover, the emergence of social
network analyses also requires subgraph listing. For example, min-
ing frequent subgraphs can reveal the information cascade patterns
in real life [19] and counting triangles helps compute the clustering
coefficient of a social network [26].

Though it is very useful, the subgraph listing is computational-
ly challenging [1]. The size of the result set is often exponential
to the number of vertices in the pattern graph. Most of the algo-
rithms enumerate1 the subgraph instances one by one [6, 13], and
cannot handle large graphs. Several stream-based approaches [31,
4] were proposed to tackle the large graphs. However, these solu-
tions can only output the approximate occurrence number and the
isomorphic subgraph instances are not available. Recently, parallel
solutions [1, 24] were proposed for the subgraph listing problem
on MapReduce [8]. The approach [1] follows the parallel query
processing paradigm. That is, it decomposes the pattern graph into
small ones (edges), extracts the subgraphs for each small pattern
graph and joins the intermediate results finally. The performance
of the parallel solution is limited by the expensive join operator.
Meanwhile, the imbalance distribution of data graph or intermedi-
ate results also hinders the performance of these solutions.

In this paper, we design a novel parallel subgraph listing frame-
work, named PSgL. PSgL is originated from the fact that each sub-
graph instance is independent. In other words, these subgraph in-
stances can be enumerated concurrently without confliction. There-
fore, from the view of these subgraph instances, the subgraph list-
ing is an embarrassingly parallel problem [10]. We solve the prob-
lem in a parallel and divide-and-conquer fashion, to improve the
performance of subgraph listing in large graphs. In PSgL, the sub-
graph listing operation is iteratively divided into partial subgraph
listings by the graph traversal, and each worker expands the par-

1we use “enumerate” and “list” interchangeably.



tial subgraph instance, meanwhile, communicates with each other
through the distribution strategy. The process is proceeded until all
the subgraph instances are found. The whole execution is based on
the graph traversal, thus avoiding the costly join operation.

Referring to the example in Figure 1, the existing approaches [1,
24] will generate a path of length four through join operation and
verify the equality of two ends for the square pattern graph. Howev-
er, in PSgL, after creating the path of length three by graph traver-
sal, it can verify the partial subgraph instance fast through checking
the neighborhood of one end without generating paths of length
four. This implies that PSgL will not produce more complicated
intermediate results with the help of graph traversal.

However, there still exist two challenges to efficiently perform
subgraph listing in PSgL. One is the workload balance problem. To
a parallel computing framework, the imbalance is the curse for the
performance improvement. In PSgL, a totally different set of partial
subgraph instances is processed in every iteration, and the workload
characteristic varies sharply between iterations. The other is the
enormous partial subgraph instance problem. Since the result set
exponentially increases when the size of the pattern graph grows,
the partial subgraph instances will be even more than the result set
due to the invalid ones. These enormous valid and invalid partial
subgraph instances heavily affect the computation, communication
and memory cost.

To address the first challenge, we prove the hardness of the prob-
lem and carefully design several distribution strategies for the PS-
gL when it distributes the partial subgraph instances in each itera-
tion. They are random distribution strategy, roulette wheel distri-
bution strategy and workload-aware distribution strategy. For the
workload-aware distribution strategy, we clearly model the cost of
expanding a partial subgraph instance and propose a simple but ef-
fective heuristic rule to achieve a good workload balance.

For the second one, we first break the automorphism of the pat-
tern graph, thus guaranteeing each subgraph instance is found ex-
actly once and reducing the number of duplicated partial subgraph
instances during the runtime. We next present a cost model to s-
elect a good initial pattern vertex which helps improve the overall
performance. At last, we design a light-weight edge index to rule
out the invalid partial subgraph instances as early as possible.

We have implemented the prototype of PSgL, and run compre-
hensive experiments on large-scale graphs. The results demonstrate
that PSgL outperforms the state-of-the-art parallel solutions.

The contributions of our work are summarized as follows:

• We propose an efficient parallel subgraph listing framework,
PSgL, which can well handle large-scale graphs.

• We introduce a cost model for the subgraph listing in PSgL.
The cost model can help design a workload-aware distribu-
tion strategy and select a good initial pattern vertex.

• We propose a simple but effective workload-aware distribu-
tion strategy, which facilitates PSgL to achieve good work-
load balance.

• We introduce a deterministic rule to select the “best” initial
pattern vertex for cycles and cliques.

• We design a light-weight edge index, which can filter invalid
partial subgraph instances efficiently.

The rest of this paper is organized as follows: we introduce the
related work and preliminaries in Section 2 and 3. Section 4 elabo-
rates the PSgL framework followed by presenting our optimization
techniques in Section 5. The implementation details are discussed
in Section 6. We show the experimental results in Section 7. Final-
ly, we conclude the work in Section 8.

2. RELATED WORK
Subgraph listing is a basic operation to the graph and complex

network analyses. Many research works have been conducted on
this problem, which can be classified into three categories: cen-
tralized algorithms, streaming algorithms and parallel algorithms.
Here we briefly review these works.

Centralized algorithms. Most solutions previously introduced
are the centralized processing approaches. N. Chiba et al. [6] pro-
posed a simple edge-searching based strategy, which derives algo-
rithms for listing triangle, quadrangle, clique in O(α(G)m) time,
where m is the number of edges in G and α(G) is the arboricity of
G. Authors [28, 13] improved the performance of centralized algo-
rithms by ensuring that each subgraph is found only once. Howev-
er, these centralized algorithms enumerate subgraphs one by one,
and cannot handle large-scale graphs. Some efficient centralized
approaches [16, 7] for large-scale graphs have been proposed as
well, but these solutions only focus on the special pattern graph,
triangle.

Streaming algorithms. In order to handle the massive graph-
s, several approaches [4, 31, 5] were introduced based on the data
stream model [23]. These methods apply the sampling, probability
and statistic techniques to count the approximated occurrence num-
ber of the pattern graphs. They are efficient to process large-scale
graphs, however, they cannot list all the isomorphic subgraph in-
stances. Furthermore, the works based on the approximated results
may lead to inaccurate conclusion.

Parallel algorithms. Another promising approach to handle
subgraph listing on large-scale graphs is the parallel computing.
Afrati et al. [1] introduced a single map-reduce round method
to enumerate the subgraph instances. The solution distributes the
edges of a data graph with efficient mapping schemes, and joins
them at each reducer. T. Plantenga [24] proposed a SGIA-MR al-
gorithm within MapReduce framework. The algorithm finds the re-
sults based on a pre-defined edge join order in several iterations and
exhibits excellent scalability. However, they still need the expen-
sive join operations, and generate a large amount of invalid inter-
mediate results. Meanwhile, the imbalanced distribution of data or
large intermediate results heavily affects the performance. Further-
more, several parallel solutions for counting triangles on a large-
scale graph were also proposed [26, 18, 12].

Another close research field is subgraph matching. The subgraph
matching runs on the property graph, where each vertex has at-
tributes. The core of the work is to improve the response time. In
[14, 30, 32], several attribute-based indexes are introduced, which
can efficiently prune the invalid intermediate results to reduce the
latency for each query. Recently, Z. Sun [25] proposed a parallel
approach for subgraph matching. The approach decomposes the o-
riginal pattern graph into several STwigs, solves STwigs in a certain
order and finally assembles the STwigs’ results together through
join operation. This approach also focuses on graph query process-
ing and reduces the latency of query answering on a large graph.
The subgraph listing can be viewed as a special case of subgraph
matching problem, where all the vertices have the same attributes.
Because of this difference, existing attribute-based indexes fail to
work on subgraph listing and the size of results of subgraph listing
increases exponentially compared with the one of subgraph match-
ing. Furthermore, the subgraph listing is an off-line analytic task
and focuses on reducing the total execution time.

Though a lot of works have been dedicated to the subgraph list-
ing operation, the problem of efficient subgraph listing on large
scale graphs is still open. In this paper, we design the PSgL frame-
work totally relying on the graph traversal, and endeavor to seek an
efficient solution for the subgraph listing operation.



3. PRELIMINARIES
Problem & Notations. Subgraph listing is a classic operation in

graph computing. It enumerates all the instances of a pattern graph
in a data graph, and both graphs have no labels on vertices and
edges. In this paper, we design the PSgL framework to efficiently
execute the operation on undirected graphs in parallel. A graph
is denoted by G = (V,E), where V and E are the sets of vertices
and edges. For each vertex v ∈ V , N(v) denotes the neighborhood
of v, and deg(v) is the degree of v, which equals to |N(v)|. We
distinguish the pattern graph and data graph by subscript p and d.

Now we proceed to present several key conceptions for the anal-
ysis of PSgL.

Power-law Graph is a graph whose degree distribution follows
a power law. That is, the probability of a vertex having a degree d
is given by:

p(d) ∝ d−γ ,

where the parameter γ is a positive constant that controls the skew-
ness of the degree distribution. A lower γ indicates that more ver-
tices are high degree, i.e., more skewed.

Random Graph is a graph that is generated by some random
processes. The classic random model is the Erdős-Rényi model [9].
The degree distribution of the ER random graph follows the poisson
distribution, and most of the vertices have the degrees around the
average.

Ordered Graph is an undirected graph with manual assignment
of partial order for the vertices. In this paper, the data graph Gd is
ordered by following two rules:

1. for any vd,ud ∈ Vd, if deg(vd) < deg(ud), then vd < ud;

2. if deg(vd)=deg(ud) and vd has a smaller vertex id, then vd<ud.

For a vertex vd in the ordered graph, we use nb to denote the num-
ber of neighbors who have smaller rank, and ns to represent the
counter part. The property of nb and ns is described below.

PROPERTY 1. The distribution of nb is more skewed than the
original degree distribution, while ns is more balanced.

Here we give a brief explanation. Assume in the original data
graph, the probability that a vertex has a degree d is p(d). Then,
for a vertex vd, whose degree is d, ns and nb are

nb = d×
∑
di<d

p(di), ns = d× (1−
∑
di<d

p(di)) (1)

From Equation 1, it is easy to figure out that higher d derives
higher nb and lower d leads to lower nb. This implies the distri-
bution of nb will be more polarized compared with the original. In
contrast, the distribution of ns will be more concentrated to the av-
erage and more balanced. Taking a power-law graph, WebGoogle,
as an example, the original degree distribution has γ = 1.66. After
ordering it, γ is 1.54 for the nb distribution while it has γ = 3.97
for the ns distribution.

Partial subgraph instance is a data structure that records the
mapping between Gp and Gd, denoted by Gpsi. Gpsi consists
of |Vp| vertex mapping pairs, where each pair is represented by
<vp,vd> (vd=map(vp)). Thus, assume the vertices of Gp are num-
bered from 1 to |Vp|, we can also simply state Gpsi as {map(1),
map(2), ..., map(|Vp|)}. In Figure 1, for example, the Gpsi for the
original Gp is {?, ?, ?, ?}, where “?” means the vp has no mapped
vd, while the Gpsi for 21256 is {1, 2, 5, 6}. In addition, we use sub-
graph instance to represent the found subgraph in data graph, such
as 21235, 21256, 22345. The original pattern graph combining a
partial subgraph instance forms a partial pattern graph, Gpp, as il-
lustrated in Figure 2(a). The vertex color of Gpp will be explained
in Section 4.3.

Automorphism of a Pattern Graph. The automorphism of a
pattern graph Gp = (Vp, Ep) is a permutation σ of the vertex set
Vp, such that the pair of vertices (up, vp) forms an edge if and only
if the pair (σ(up), σ(vp)) also forms an edge. That is, it is a graph
isomorphism from Gp to itself. The automorphism causes the same
subgraph instance found multiple times. For example, without any
preprocessing, the 22345 can be found eight times by the pattern
graph in Figure 1, because there exist eight valid permutations that
make the square pattern graph isomorphism to itself. In order to
guarantee that each subgraph instance is found exactly once, we
need to eliminate the automorphism of a pattern graph. We name
this procedure as automorphism breaking, and the approach is de-
scribed in Section 5.2.1.

4. PARALLEL SUBGRAPH LISTING FRAME-
WORK

The Parallel Subgraph Listing (PSgL) framework follows the
state-of-the-art graph processing paradigm [21], which applies the
vertex-centric programming model and Bulk Synchronous Parallel
[27]. The data graph is randomly distributed among the workers’
memory. PSgL iteratively expands the partial subgraph instances
by data vertices in parallel, until all the subgraph instances are
found. In each iteration, the newly created partial subgraph in-
stances are sent across the workers according to the distribution
strategy. The entire enumeration process relies on the partial sub-
graph instance and its independence property.

In the following subsections, we discuss the properties of partial
subgraph instance first. Then we elaborate the PSgL framework
based on the partial subgraph instance and the core partial subgraph
instance expansion algorithm. At last, we analyze the cost of PSgL.

4.1 Independence Property
Partial subgraph instance is a key intermediate result for the enu-

meration process. All the partial subgraph instances during an enu-
meration form a tree, called Gpsi tree. A node in the tree cor-
responds to a Gpsi and the children of a node are derived from
expanding one mapped data vertex in the node (Section 4.3). The
root of the tree is the Gpsi obtained from the input pattern graph.
Figure 2(b) illustrates (a part of) the Gpsi tree for square pattern
graph listing on data graph in Figure 1. {?,?,?,?} is the root. By ex-
panding the mapped data vertex 6 in {6,?,?,?}, it generates two new
Gpsis, {6,1,?,5} and {6,5,?,1}. Therefore, {6,1,?,5} and {6,5,?,1}
are the children of {6,?,?,?} in the tree.

A single Gpsi encodes a set of subgraph instances in its subtree.
Gpsis at the same level of the tree are a complete representation of
the whole result set. From top to down in a Gpsi tree, the original
enumeration task is divided into more fine-grained subtasks (sub-
trees). Moreover, we notice that the partial subgraph instance is
independent from each other except the ones in its generation path.
In other words, after the partial subgraph instance is generated, it
can be processed independently without being aware of other ones.
For example, {2,1,?,3} and {6,5,?,1} can be simultaneously com-
puted on data vertex 1 and 5 respectively. We name this property
as the independence property.

The tree hierarchy and independence property allow the sub-
graph listing problem to be solved in a divide-and-conquer style.
We can first divide the problem into partial subgraph listing and
then conquer the partial subgraph instance and generate new ones
in parallel, the process is repeated until all results are returned.

4.2 PSgL Framework
Our proposed PSgL is in charge of constructing the Gpsi tree

for a pattern graph in parallel. It consists of two distinct phases,
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Figure 2: Partial Pattern Graph, Partial Subgraph Instance Tree and PSgL Framework

Algorithm 1 Expand a Partial Subgraph Instance
Input: partial subgraph instance Gpsi, pattern graph Gp

1: get the current expanding vp and vd from Gpsi

2: candList← NULL, color(vp)← BLACK
3: /* explore vp’s neighbor */
4: foreach v,p in N(vp) do
5: if processNeighbor(v,p,vd,candList)=false then
6: return;
7: end if
8: end foreach
9: if isComplete(Gpsi)=true then

10: print subgraph instance
11: else
12: generate new Gpsis by combining candidates in candList and

distribute them based on distribution strategy in Algorithm 3.
13: end if

i.e., initialization and expansion, and both are concentrated on the
partial subgraph instance.

Initialization phase. In this phase, each data vertex creates a
Gpsi which only contains a vertex mapping pair of the data vertex
and the selected initial pattern vertex (Section 5.2.2). These Gpsis
form the initial set of partial subgraph instances and correspond to
a one-level Gpsi tree as the start.

Expansion phase. This is the core procedure in the PSgL frame-
work and the whole Gpsi tree will be constructed after this phase.
Figure 2(c) shows the high-level execution flow of expansion phase.
It consists of several iterations. In an iteration, where the divide-
and-conquer happens, each Gpsi is expanded independently on a
certain worker, and generates more fine-grained ones. These new
Gpsis are sent to the next worker according to the distribution strat-
egy, if they are not the complete subgraph instances. The iteration
ends when the previously received Gpsis are processed and the new
ones are received by the corresponding workers. The phase will not
finish until there is no Gpsi in the framework.

Please note that PSgL may not guarantee that each Gpsi is ex-
panded in the same pace, which means that the Gpsi tree doesn’t
grow level by level. It only guarantees that all the Gpsis in PSgL
cover the results which have not been found. Nevertheless, PSgL
is also suitable for the case where the tree grows one level in each
iteration.

4.3 Partial Subgraph Instance Expansion
The partial subgraph instance expansion algorithm generates more

fine-grained Gpsis and makes the Gpsi tree grow. It explores the
partial pattern graph, which contains three kinds of vertices: BLACK,
GRAY and WHITE. Figure 2(a) shows a Gpp during the expansion.

BLACK vertex is the one which has been expanded. The neigh-
bors of a BLACK vertex must consist of BLACKs and GRAYs.

GRAY vertex has a mapped data vertex, but it has not been ex-
panded. It must be adjacent to at least one BLACK vertex. More-
over, the GRAY vertices represent the expanding candidate set of
this partial subgraph instance for the following process.

Algorithm 2 Process a Neighbor of Pattern Vertex
Input: v,p, vd, candList
Output: updated candList
1: if color(v,p) = GRAY then
2: if the map(v,p) is not in N(vd) then
3: return false
4: end if
5: else if color(v,p) = WHITE then
6: /* details are described in Algorithm 5*/
7: candidate← getCandidateSet(v,p)
8: if candidate = NULL then
9: return false

10: end if
11: add the candidate into candList
12: end if{BLACK v,p is omitted.}
13: return true

WHITE vertex is the one which hasn’t been mapped to any data
vertex.

The expansion algorithm changes one GRAY vertex, which is
specified by the previous iteration, into BLACK, and also makes its
neighbor become GRAY if it is WHITE. The expansion procedure
is presented in Algorithm 1. It first obtains the expanding pattern
vertex vp from Gpsi, sets vp in BLACK (Lines 1-2), and then pro-
cesses vp through neighbor exploration on the pattern graph (Lines
4-8). In the end (Lines 9-13), it prints the found subgraph instance,
if the Gpsi is completed. Otherwise, it sets the WHITE neighbors in
GRAY, and creates new Gpsis by combining neighbors’ candidates
with pruning invalid combinations via the rules in Section 5.2.3.
For each new Gpsi, it selects a GRAY vertex according to the dis-
tribution strategy as the next expanding vertex and sends the new
Gpsi to the corresponding worker.

Algorithm 2 illustrates the details for processing a neighbor of
vp. It processes the neighbor according to its color. If it is GRAY,
we need to verify whether the edge exists in the data graph or not.
It retrieves the candidates for the WHITE vertex from the neighbors
of data vertex vd. BLACK vertices are just omitted because they
have been expanded previously and the corresponding edge must
exist in the data graph.

4.4 Cost Analysis
In this subsection, we analyze the performance of PSgL and re-

veal the metrics related to its cost. Because the partial subgraph
instance is the minimal computing unit in the framework, let’s first
consider the cost of processing a single partial subgraph instance in
the expansion phase, denoted as load(Gpsi). From Algorithm 1,
the load(Gpsi) consists of communication and computation costs.
The communication cost is caused by distributing the new Gpsis,
while the generating process itself causes the significant computa-
tion cost. The asynchronous communication model [21] facilitates
PSgL to do the communication and computation concurrently, so
the load(Gpsi) is determined by the heavier one. On account of



the problem itself is computation intensive, the load(Gpsi) is ap-
proximate to the computation cost, in most iterations.

The computation cost includes the cost of verifying the GRAY
neighbors (costg) and the cost of generating new Gpsis by retriev-
ing candidates for the WHITE neighbors (costw). We use ce to
represent the cost of generating a single Gpsi and f(vp) to denote
the number of new Gpsis through expanding vp. The load(Gpsi)
can be calculated as

load(Gpsi) = costg + costw = costg + ce × f(vp). (2)

Based on the load(Gpsi), the cost of a worker can be repre-
sented as L=

∑N
i=1 load(Gpsi), where N is the number of Gpsi

processed by the worker.
Assume that the subgraph listing task runs on a system with K

workers, and the task finishes in S iterations. During the ith iter-
ation, the worker k processes Nki Gpsis. Then we have the total
cost of the task T as

T =

S∑
i=1

max
1≤k≤K

{Lki} =
S∑

i=1

max
1≤k≤K

{
Nki∑
j=1

load(Gpsi)j} (3)

To achieve high performance in PSgL, it is required to minimize
the total cost T . From the above equation, we can figure out there
are three metrics affecting the overall cost.

First is the number of iterations S. In general, the fewer num-
ber of iterations achieves better performance, since there is some
overhead between iterations, like synchronization. The following
theorem shows the bound of S for a pattern graph.

THEOREM 1. Given a pattern graph Gp = (Vp, Ep), if the
Gpsi tree grows level by level, then S is restricted by |MVC| ≤
S ≤ |Vp| − 1, where |MVC| is the size of the minimum vertex
cover of Gp.

PROOF. Because the Gpsi tree grows level by level, in each it-
eration, only one vp is expanded. Thus PSgL must visit at least
|MVC| vertices before every edge in Gp is explored. But it will
not exceed |Vp| − 1 after all the edges are explored. In conclusion,
S is limited by |MVC| ≤ S ≤ |Vp| − 1.

In PSgL, not all the partial subgraph instances have the same
expansion path because of the distribution strategy, and hence we
do not explicitly optimize the S. Its effects are considered during
the initial pattern vertex selection.

The second issue is the workload balance which is implied by
the max function. As a classic parallel computing framework, it
can be damaged by the imbalance. So we design and compare sev-
eral distribution strategies in Section 5.1 to investigate which one
provides better performance.

The last is the number of Gpsis. As above equations indicate
that the performance of worker in an iteration is related to Nki and
f(vp), we need the expansion algorithm produce as small size of
Gpsi as it can. This will reduce the computation cost and commu-
nication cost at the same time. We propose several techniques to
achieve this goal in Section 5.2.

5. OPTIMIZATION TECHNIQUES
In this section, we introduce the optimization techniques to im-

prove the performance of PSgL. These techniques are classified in-
to two categories. One is the partial subgraph instance distribution
strategy for the workload balance, and the other is for reducing the
enormous partial subgraph instances.

5.1 Distribution Strategy
As Section 4.4 discussed, the distribution of Gpsis should make

the workload balance among the workers in an iteration. In general,
a good data graph partition will help to achieve this goal. However,

due to the generality of the input pattern graph and the variable
characteristic of workload of Gpsis between iterations, it is difficult
to design a one-size-fit-all graph partition.

In PSgL, the data graph is simply random partitioned, and the
Gpsis are distributed online without fixed expansion path to avoid
the workload imbalance. For a single Gpsi, there are several choic-
es when distributing it. Illustrated in Figure 2(a), all the GRAY
vertices are the candidates for the next expansion. It is possible to
achieve workload balance by selecting a good destination for each
Gpsi.

The cost of a Gpsi has been modeled in Equation 2. Here we
define the increased workload wi of worker i, if a Gpsi is sent to
the worker i. The wi can be formulated as

wi =

{
minGRAY vp{load(Gpsi)vp} map(vp) belongs to i;
+∞ otherwise.

(4)

We proceed to define the partial subgraph instance distribu-
tion problem as below:

DEFINITION 1. There are N partial subgraph instances to be
processed by K workers, and the cost of a partial subgraph in-
stance processed by worker i is defined in Equation 4. We use Wi

to denote the total cost for the partial subgraph instances processed
by worker i. Then the goal is to find a distribution strategy for the
N partial subgraph instances to achieve

min{ max
1≤i≤K

{Wi}}

The following theorem describes the hardness of the partial sub-
graph instance distribution problem.

THEOREM 2. The partial subgraph instance distribution prob-
lem is NP-hard.

PROOF. Minimum Makespan Scheduling [17], which is a well
known NP-hard problem, can be easily reduced to the partial sub-
graph instance distribution problem. A typical Minimum Makespan
Scheduling problem on unrelated machines can be stated as “There
are m parallel machines and n independent jobs. Each job is to
be assigned to one of the machines. The processing of job j on
machine i requires time Pij . The objective is to find a schedule
that minimizes the makespan”. So if jth job maps to the jth Gpsi

and the cost of job j processed by machine i maps to wjk, then the
Minimum Makespan Scheduling problem is reduced to the partial
subgraph instance distribution problem.

In order to solve this NP-hard problem efficiently, we propose
the following heuristic rules.

5.1.1 Workload Aware Distribution Strategy
For the partial subgraph instance distribution problem, all the

partial subgraph instances are generated online, so we need an on-
line solution. The classical heuristic rule for this situation is select-
ing worker j for the ith Gpsi which has minimal overall workload,

arg min
j

{Wj + wij}

In [17], the authors proved that this greedy rule is tightly bound-
ed by K ×OPT . However, this greedy solution is likely to obtain
a local optimum as it always tries to balance the cost first when a
new item comes in.

We refine the heuristic rule by reducing the penalty part and it
will increase the opportunity to jump out the local optimum. The
general form of the heuristic rule can be

arg min
j

{Wα
j + wij}, 0 ≤ α ≤ 1,

where Wα
j stands for the penalty part which restricts the objec-

tive to be balanced. When α = 1, it is the original heuristic rule.



When α = 0, it implies that each time the rule chooses worker j
where the Gpsi incurs the least increased workload. But this rule is
more likely to be imbalanced, though the total workload would be
minimized.

Based on the above observations, we choose α = 0.5 and make
a trade off between the balance and minimal workload. To some
extend, the rule with α = 0.5 can avoid local optimum more likely
than α = 1, while it achieves more balance than α = 0. Besides,
the following theorem guarantees that in the worst case, the perfor-
mance of α = 0.5 is still bounded by K ×OPT .

THEOREM 3. For the partial subgraph instance distribution prob-
lem, the overall cost achieved by the heuristic rule with α = 0.5 is
no K times worse than the OPT .

PROOF. Let si = min1≤j≤K wij which indicates the minimal
cost of ith Gpsi processed across all the K workers and each wij

is positive integer in our problem.
Then let the lower bound of the cost for n Gpsi as

g(n) =

n∑
i=1

si

It is easy to infer that OPT ≥ 1
K

× g(N). Let f(n) represent
the overall cost obtained by the greedy algorithm. Each time when
ith Gpsi is distributed to worker k, the following inequations are
held:

Wα
k + wik ≤ Wα

j + wij , 1 ≤ j ≤ K (5)

We next prove the theorem by inducing the task id.
(1) i = 1, f(1) = s1 ≤ g(1)
(2) f(i) = max(f(i− 1),Wk + wik)
(2.a) f(i−1) ≥ Wk+wik, then f(i) = f(i−1) ≤ g(i−1) ≤

g(i− 1) + si ≤ g(i)
(2.b) f(i − 1) ≤ Wk + wik, then f(i) = Wk + wik, and

Equation 5 makes sure that W 0.5
k + wik ≤ W 0.5

j + si ≤ f(i −
1)0.5 + si.

First, we can get the inequations: f(i)−wik ≤ f(i−1) ≤ f(i)
Then,

W 0.5
k + wik ≤ f(i− 1)0.5 + si

[f(i)− wik]
0.5 + wik ≤ f(i− 1)0.5 + si

(wik − si)
2 ≤ f(i− 1) + [f(i)− wik]

− 2f(i− 1)0.5 × [f(i)− wik]
0.5

≤ f(i− 1) + [f(i)− wik]

− 2[f(i)− wik]
0.5 × [f(i)− wik]

0.5

f(i) ≤ f(i− 1) + si + (wik − si)− (wik − si)
2

≤ f(i− 1) + si ≤ g(i− 1) + si ≤ g(i)

At last, we obtain f(N) ≤ g(N) ≤ K ×OPT .

In the following, we show how to estimate load(Gpsi) in prac-
tice. Because costg is only caused by neighborhood search, which
can be done efficiently by a bitmap index, we can estimate the cost
of a Gpsi as f(v). The value of f(vp) is limited to [0,

(
deg(vd)
wvp

)
]

range, here wvp is the number of WHITE neighbors around vp. Sub-
sequently, we use the upper bound of f(v) to estimate itself, thus
guaranteeing the estimated value and the accurate f(v) have the
same order. So load(Gpsi) ≃

(
deg(vd)
wvp

)
, if it expands vp for the

Gpsi. The pseudo-code of the workload-aware distribution strategy
is presented in Algorithm 3. The time complexity of the algorith-
m can be O(|Vp|) by only calculating the approximate value of(
deg(vd)
wvp

)
.

Algorithm 3 Distribution Strategy Summary

1: Roulette Wheel Distribution Strategy
2: foreach GRAY vp in Gpsi do
3: pvp ← calculate through Equation 6.
4: end foreach
5: randnum← Random(0,1)
6: foreach GRAY vp in Gpsi do
7: if randnum ≤ pvp then
8: return vp;
9: end if

10: randnum← randnum− pvp
11: end foreach

1: Workload Aware Distribution Strategy
2: Wj indicates the total workload for worker j
3: i← current Gpsi id
4: k ← 0 // k records the selected worker id
5: vk records the selected expanding vp
6: wik records the increased workload for worker k
7: foreach GRAY vp in Gpsi do
8: j ← worker id of map(vp)

9: if Wα
k + wik > Wα

j +
(deg(vd)

wvp

)
then

10: k ← j, wik ←
(deg(vd)

wvp

)
, vk ← vp

11: end if
12: end foreach
13: Wk ←Wk + wik

14: return vk

5.1.2 Naive Distribution Strategies
Here we introduce two other distribution strategies for the partial

subgraph instance distribution problem. They are random distribu-
tion strategy and roulette wheel distribution strategy.

Random distribution strategy is randomly choosing a GRAY ver-
tex for a Gpsi. It will balance the number of Gpsi processed by
a worker. However, the different Gpsis will have various effect-
s to the workload and the cost is still imbalance among workers.
Clearly, this strategy has its own merit, i.e., it is simple and has the
minimal overhead.

Roulette wheel distribution strategy considers the degree infor-
mation of the data graph when distributing a partial subgraph in-
stance. Since load(Gpsi) is approximated to f(vp), it implies the
larger degree of a data vertex results in higher cost for a Gpsi. Thus
the following heuristic rule can be derived.

HEURISTIC 1. The data vertex with larger degree should ex-
pand less Gpsi.

The rule indicates Gpsi is preferred to be expanded by a data
vertex with small degree. Considering the balance problem, we
propose a distribution strategy based on the roulette wheel selection
[2].

The roulette wheel distribution strategy chooses GRAY vertex k
in Gpsi with a probability pk. pk is defined in the following equa-
tion:

pk =

∏n
j=1,j ̸=k deg(vdj)∑n

i=1

∏n
j=1,j ̸=i deg(vdj)

(6)

where n is the number of GRAYs in Gpsi, vdj is the data vertex
mapping to GRAY vertex vpj .

The probability indicates that Gpsi has a higher chance to be
expanded by a data vertex with smaller degree. In order to avoid
the imbalance, it is still possible that some Gpsis are distributed
to the high degree data vertices. The strategy can achieve better
balance than the random strategy. However, due to the probability
pk is unaware of previous Gpsi’s distribution, it may cause some
data vertices with small degree overloaded.



As the probability of each vp can be calculated in O(1) with
proper preprocess, the roulette wheel distribution is a linear strat-
egy with time complexity O(|Vp|). The procedure is described in
Algorithm 3.

5.2 Partial Subgraph Instance Reduction
The enormous partial subgraph instances consume a lot of mem-

ory resources, and introduce expensive generation and communi-
cation cost as well. It is important to reduce the number of par-
tial subgraph instances, in order to improve PSgL’s performance.
However, the size of partial subgraph instances is related to many
factors, including the structure of the pattern graph, structure of the
data graph, the initial pattern vertex, distribution strategies and so
on. It is tough to design one solution for such a complex problem.
We propose three independent mechanisms from three aspects to
reduce the size of partial subgraph instances. They are automor-
phism breaking of the pattern graph, initial pattern vertex selection
based on a cost model, and a pruning method based on a light-
weight index.

5.2.1 Automorphism Breaking of the Pattern Graph
As mentioned in Section 3, automorphism breaking of a pattern

graph guarantees each subgraph instance is found exactly once, it
reduces the duplicated partial subgraph instances. However, the
classical graph labeling method [11] for breaking automorphism
cannot handle our problem, because the labeling has nothing to do
with the data graph, which even has no label.

Since the data graph has been ordered by its degree sequence,
we also assign a partial order set for the pattern graph. The partial
order set not only breaks the automorphism of the pattern graph,
but also can be used to prune partial subgraph instances. Because
the graph automorphism problem is still unknown whether it has a
polynomial time algorithm or it is NPC problem [20], breaking it
has the same difficulty. Here we introduce an approach by itera-
tively assigning a partial order on the pattern graph until the graph
is not automorphism any more.

The main idea, in each iteration, is to pick an equivalent vertex
group, where each vertex can be mapped to others in a certain au-
tomorphism of the pattern graph, and eliminate a member from the
group by assigning a partial order, which sets the lowest rank to
the eliminated member compared to the remained ones. We use
the DFS to find the equivalent vertex group in a pattern graph, and
it has been demonstrated that DFS can detect automorphism of a
graph with up to 100 vertices in seconds [13].

However, there are several partial order sets to break the auto-
morphism of a graph. Because PSgL follows the graph traversal,
the partial order on edges can be immediately used during the ex-
ploration, and prune invalid partial subgraph instances early. More-
over, as the order between vertices who are not connected can only
be used after exploration, we apply the following heuristic rule to
select a good partial order set.

HEURISTIC 2. In each iteration, the algorithm selects the e-
quivalent vertex group which contains vertices with higher degree
to break.

5.2.2 Initial Pattern Vertex Selection
Initial pattern vertex is the one where the algorithm starts to tra-

verse. Fixing an initial pattern vertex prevents producing duplicat-
ed subgraph instances. However, different initial pattern vertices
generate partial subgraph instances in different size and have var-
ious influences on the performance of a pattern graph. We design
a cost model-based initial pattern vertex selection for the general

Algorithm 4 Cost Estimation for a Pattern Vertex
Input: vp, Gp

1: estimatedCost← 0
2: l← 0, n← |Vd|, Gpp ← Gp /*l means the number of iteration.*/
3: mark vp GRAY in Gpp.
4: queue← (Gpp, n, l)
5: while queue is not empty do
6: (Gpp, n, l)← queue.front(); queue.pop()
7: estimatedCost← estimatedCost+cost(Gpp, n, l)
8: if Gpp is expandable then
9: foreach GRAY vp in Gpp do

10: expand and generate new (G,
pp, n

,, l + 1)
11: if (G,

pp, n
,, l + 1) exists then

12: update the existed (G,
pp, n

,, l + 1)
13: else
14: queue.push((G,

pp, n
,, l + 1))

15: end if
16: end foreach
17: end if
18: end while
19: return estimatedCost

pattern graph. Besides, we derive a deterministic rule based on the
model for two special pattern graphs: cycles and cliques.

General pattern graph. The optimal initial pattern vertex should
be the one which leads to the minimal cost. We design a cost mod-
el to estimate the cost of a certain initial pattern vertex, and select
the vertex with minimal estimated cost as the “best” initial pattern
vertex.

For a general pattern graph, the initial pattern vertex selection
framework enumerates all the pattern vertices, and for each one,
calculates its cost by traversing from the selected vertex along with
estimating the cost for each generated partial pattern graph (Algo-
rithm 4). The overall estimated cost for an initial pattern vertex
equals to the sum of the cost of all the partial pattern graphs. The
time complexity of selection framework is O(|Vp| × |Ep|).

The core portion of the framework is the model to estimate the
cost of a partial pattern graph, cost(Gpp, n, l). In the selection
framework, we assume that the random distribution strategy is used.
When there are n Gpsis for Gpp to be expanded, the cost of these
Gpsis can be estimated as:

cost(Gpp) = n× (costg +
1

C

C∑
i=1

ce × f(vpi)),

where C is the number of GRAY vertices in Gpp, and costg is sim-
ilar for different GRAY vertices.

As it does not know the data vertex that vp maps to, the approach
in Section 5.1 fails to estimate f(vp). But, it is easy to obtain the
degree distribution p(d) of the data graph by sampling or travers-
ing, we can estimate f(vp) with the following equation:

f(vp) ≃
dmax∑

d=deg(vp)

p(d)×

(
d

wvp

)
Based on the selection framework and cost estimation model,

we can choose a good initial pattern vertex for the general pattern
graph.

Cycles and cliques. The initial pattern vertex selection frame-
work indicates the following theorem.

THEOREM 4. Under the initial pattern vertex selection frame-
work, the best initial pattern vertex is the one which derives a
traversal order minimizing the total number of partial subgraph
instances.

PROOF. Assuming the simulation for a pattern vertex terminates
in S iterations and, in the lth iteration, there exist Tl different par-
tial pattern graphs, each has nlt corresponding Gpsis. The total



number of Gpsi in iteration l is nl. As the random distribution s-
trategy is applied, so nl = nlt × Tl. Then the total estimated cost
for the pattern vertex is:

Te =

S∑
l=0

Tl∑
t=1

nlt × (costg +
1

C

C∑
i=1

ce × f(vpi))

Next, we define gl as the average expanding coefficient at itera-
tion l. The gl can be represented as

gl =

{
1 l = 0
1
Tl

1
C

∑Tl
t=1

∑C
i=1 f(vpi) l ̸= 0.

Now, Te can be represented by gl

Te =
S∑

l=0

(nl × costg + ce × nl × gl) ∝
S∑

l=0

nl × gl (7)

Here we ignore costg with the same reason in Section 5.1.
The term nl × gl is the number of newly generated Gpsi in iter-

ation l. So from Equation 7, we can conclude, under our selection
framework, a traversal order minimizing the total number of partial
subgraph instances results into minimal estimated cost Te, which
implies the corresponding initial pattern vertex is the best.

For the cycles and cliques, after breaking the automorphism,
there must be a vertex who has the lowest rank, because the first
equivalent vertex group contains all the pattern vertexes. Then we
have a deterministic rule, that is the vertex with the lowest rank
is the best initial pattern vertex for the cycles and cliques, and the
following theorem shows the correctness.

THEOREM 5. After breaking the automorphism of cycles and
cliques, the vertex vlr with the lowest rank is the best initial pattern
vertex for any ordered data graph.

PROOF (sketch). I) first step, l = 1.

g1 = f(vp) =
1

|Vd|

|Vd|∑
i=1

(deg(vdi)
wvp

)
∵ C = 1, T1 = 1

For cliques and cycles, wvp=|Vp| − 1 and wvp=2, respectively.
On an ordered graph with the partial order pruning, deg(vdi)=ns

or nb. Because
∑|Vd|

i=1 ns(or nb)=|Ed|, and Property 1 holds, we
can easily infer that vlr has the minimal g1.

II) remained steps, l > 1. For all the cliques we have gl =
1, because of wvp=0. For the cycles, due to wvp=1, all the gls
are linear to the degree and result in gi≃gj ,j>i>1 (sophisticated
analyses are omitted).

At last, Equation 7 can derive

Te ∝
S∑

l=0

nl × gl = n0 ×
S∑

l=0

i=l∏
i=0

gi (8)

Based on the characteristics of gl and Equation 8, we can work
out that vlr , which has minimal g1, leads to the minimal number of
partial subgraph instances, for the cycles and cliques. According to
Theorem 4, vlr is the best initial pattern vertex.

Though, Theorem 5 points out vlr is the best initial pattern ver-
tex, the improvement still depends on the original degree distribu-
tion of the data graph. For the power-law graph, where the dis-
tributions of nb and ns can be totally different2, vlr can enhance
the performance significantly. Given a random graph, where the nb

and ns are similar after ordering, PSgL may not benefit a lot from
vlr .
2refer to the example in Section 3.

Algorithm 5 Get Candidate Set
Input: a WHITE neighbor v,p of vp
Output: candidates cand
1: foreach v,d in N(vd) do
2: /*pruning rule 1.*/
3: if deg(v,d) < deg(v,p) and partial order restriction then
4: continue
5: end if
6: /*pruning rule 2.*/
7: valid← true
8: foreach v,,p in N(v,p) do
9: if color(v,,p ) = GRAY and checkEdgeExistence(v,d, map(v,,p )) =

false then
10: valid← false
11: break
12: end if
13: end foreach
14: if valid = false then
15: continue
16: end if
17: add u,

d into cand
18: end foreach

5.2.3 Pruning Invalid Partial Subgraph Instance
The aforementioned two techniques reduce the size of partial

subgraph instances off-line. However, during the runtime, many
invalid partial subgraph instances, which do not lead to find other
subgraph instances, are generated. The later they are pruned, the
more resources they consume.

In order to reduce the number of invalid partial subgraph in-
stances, the quality of the candidate set of WHITE vertices needs
to be improved. This can be done by efficient filtering rules. How-
ever, without label information, most existing pruning techniques
[14, 32] fail in this context. The only information we can use is
the graph structure and the partial order. First, the degree infor-
mation filters the partial subgraph instance, if deg(vd) < deg(vp).
Second, it is the neighbor connectivity. When retrieving candidates
for a WHITE neighbor of the expanding pattern vertex vp, it should
guarantee that the edge between the neighbor and vp’s GRAY neigh-
bor exists in the data graph. In Figure 2(a), we need to check edge
(3,4) when expanding vertex 2. At last, during the expansion, the
partial order must be consistent between the pattern graph and data
graph.

Since the data graph is stored in distributed memory, it is expen-
sive to check an edge’s existence remotely. So we design a light-
weight edge index in PSgL for fast checking the existence of an
edge in data graph. It is an inexact index which is built on the bloom
filter [3], and indexes the ends of an edge. The index can be built
in O(m) time and consumes a small memory footprint. Moreover,
the precision of the index is adjustable and the successive iteration
only needs to verify a small portion of partial subgraph instances.

With the help of above pruning rules, it can generate high-quality
candidate sets. Algorithm 5 illustrates the procedure of candidate
generation for a WHITE vertex. It first uses the degree constrains
and partial order restriction to filter the invalid candidates, and then
checks all the v,p’s GRAY neighbors through the light-weight index.

6. IMPLEMENTATION DETAILS
In this section, we present the implementation details of PSgL.

The prototype of PSgL is written in Java on Giraph3, which is an
open-source Pregel first released by Facebook.

The design of initialization phase and expansion phase in PSgL
follows the vertex-centric model, so both phases are integrated into

3https://github.com/apache/giraph
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Figure 3: Performance of Various Distribution Strategies

a single vertex program on Giraph. The first superstep (iteration) of
the vertex program is responsible to execute the initialization phase.
The following supersteps, each data vertex processes the incoming
Gpsis by Algorithm 1. The messages communicated among work-
ers not only include Gpsi, but also encode the status information,
such as the next expanding pattern vertex, the colors of pattern ver-
tices and the progress of Gpsi. This is the basic implementation
of PSgL, and the Gpsi tree grows one level in each iteration. Be-
sides the basic vertex program, PSgL also requires several kinds of
shared data, i.e., pattern graph, initial pattern vertex, light-weight
index, and degree statistics. Considering these data that are all s-
mall enough to be stored on a single node, (i.e., the edge index of
Twitter dataset only costs 2GB.), in current version of PSgL, each
worker maintains a copy of them. Moreover, these shared data are
static, so we compute them off-line once and load them before run-
ning the vertex program through preApplication() API in Worker-
Context object.

Furthermore, the distributor is a specific module of PSgL for sup-
porting various distribution strategies. Since the distributor selects
the next expanding pattern vertex for a Gpsi and is shared by all
the local data vertices, it can be initialized in preApplication() as
well. The two naive distribution strategies only rely on the stat-
ic shared information, which are easy to implement locally. The
workload-aware distribution strategy ideally needs the dynamical
global information of each worker’s workload Wi. However, in the
parallel execution setting, it is expensive to maintain such a global
view. Instead, during the distribution, each worker only maintains
a local view of the entire workload distribution. Thus the update of
Wk can be done fast without communication and synchronization.
In practice, since a partition usually contains a moderate size of ver-
tices, it is possible to make a good distributing decision according
to the local information.

7. EXPERIMENTS
In this section, we evaluate the performance of PSgL. The fol-

lowing subsection describes the environment, datasets and pattern
graphs. We experimentally demonstrate the effectiveness of opti-
mization techniques in Section 7.2, 7.3 and 7.4. Section 7.5 presents
the comparison results on various pattern graphs. At last, we e-
valuate the scalability of PSgL on large graphs and the number of
workers in Section 7.6 and 7.7 respectively.

7.1 Experimental Setup
All the experiments were conducted on a cluster with 28 nodes,

where each node is equipped with an AMD Opteron 4180 2.6GHz
CPU, 48GB memory and a 10TB disk RAID.

Pattern graphs. We use five different pattern graphs, PG1 to
PG5, illustrated in Figure 4. The partial orders obtained from au-
tomorphism breaking are listed below the pattern graph.

Graph datasets. We use six real-world graphs and one synthet-
ic graph in our experiments. All the real-world graphs are undi-
rected ones created from the original release by adding reciprocal

1 4

32

1

2 3

1 4

32

1 4

32

2 5

43

1

v1 < v2

v1 < v3

v2 < v3

v1 < v2 ,  v1 < v3

v1 < v4 , v2 < v4

v1 < v3

v2 < v4 v2 < v5

v1 < v2 ,  v1 < v3

v1 < v4 , v2 < v3

v2 < v4 , v3 < v4

PG1 PG2 PG3 PG4 PG5

Figure 4: Pattern Graphs
edge and eliminating loops and isolated nodes. Except Wikipedia,
which can be downloaded from KONECT, other real-world graph-
s are available on SNAP. The random graph is generated by Net-
workX following the Erdős-Rényi model. Table 1 summarizes the
meta data of these graphs.

Web-
Google

Wiki-
Talk

Us-
Patent

Live-
Journal

Wiki-
pedia Twitter Rand-

Graph
|V | 0.9M 2.4M 3.8M 4.8M 26M 42M 4M
|E| 8.6M 9.3M 33M 85M 543M 1,202M 80M

Table 1: Meta Data of Graphs
During the experiments, we only output the occurrences of the

pattern graph. But we generate the found subgraph instances and
can store them if necessary. Each experiment is ran five times and
we showed the average performance without including the loading
time in the paper. The reported runtime is the real job execution
time which includes both communication and computation costs.

7.2 Effects of Distribution Strategies
We evaluate five distribution variants, i.e., random distribution

strategy, roulette wheel distribution strategy and workload-aware
distribution strategy with three different parameters, which are named
(WA,0), (WA,0.5), (WA,1). Take (WA,0) as an example, it means
the workload aware distribution strategy which has α = 0.

Since the distribution strategy balances the workload for each it-
eration, the effect of distribution strategies varies according to the
different characteristics of an iteration. Here we show the results
of PG2, where middle (l > 1) iterations generate new partial sub-
graph instances, and PG4, where only the first (l = 1) iteration
generates partial subgraph instances, as representatives. We pro-
filed the experiments and verified the effectiveness of the (WA,0.5)
strategy.

From Figures 3(a), 3(b) and 3(c), we can see that the strategy
(WA,0.5) can achieve about 77% improvement on the WikiTalk a-
gainst the random distribution strategy, when running PG2. Com-
pared with other three strategies, it can still have around 11% to
23% improvement. There are similar results on the WebGoogle.
On the UsPatent, the improvement is not as significant as previ-
ous two graphs. This is because the degree distributions of Web-
Google and WikiTalk are seriously power-law skewed, which have
γ = 1.66 and γ = 1.09 respectively, while the power-law param-
eter γ of UsPatent is 3.13. It reveals that the strategy (WA,0.5) is
obviously benefit the graphs with skewed degree distribution, when
the pattern graph generates new partial subgraph instances in the
middle iteration.
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Figure 6: Influences of the Initial Pattern Vertex on Various Data Graphs

In Figure 3(d), all the five strategies have similar performance
when running PG4 on the LiveJournal. For the clique pattern
graph, it only generates the partial subgraph instances in the first
iteration which is affected by the initial pattern vertex, and the fol-
lowing iterations are for the verification, which is an operation with
constant cost. So the other distribution strategies can also obtain
good performance. This implies the performance of a distribution
strategy is related to the pattern graph as well.

Figure 5 shows the detailed performance of each worker when
running PG2 on WikiTalk. It illustrates that the strategy (WA,0.5)
achieves balance while minimizing the cost of the slowest work-
er. Though, the strategy (WA,1.0) achieves similar balance, it is
stuck into the local optimum and cannot minimize the cost of the s-
lowest worker. While strategy (WA,0) can guarantee most workers
have smaller cost, but it cannot achieve better balance, the worker
35 performs much slower than the others. In addition, the slow-
est worker is different between random distribution strategy and
roulette wheel distribution strategy. It is because the vertices with
higher degree cause the imbalance in random distribution strate-
gy, while the ones with smaller degree having too much workload
cause the imbalance in roulette wheel distribution strategy. These
phenomena are consistent with previous discussions in Section 5.1.

7.3 Importance of the Initial Pattern Vertex
Here we report the results on the power-law graph and random

graph with running PG1, PG2 and PG4, which have a determin-
istic rule to identify the good initial pattern vertex according to the
cost model. This will clearly reason the importance of selecting a
good initial pattern vertex.

Figures 6(a), 6(b) and 6(c) show the performance of different
initial pattern vertices on the power-law graph. The real runtime of
each initial pattern vertex is normalized to the runtime of the best
initial pattern vertex for each pattern graph, so we present the run-
time ratio in figures. For the clarity of the figure, we did not present
the runtime ratio which exceeds 100 times over the best initial pat-
tern vertex on WikiTalk. From the figures, we notice that for PG1

on LiveJournal, it is about 8.5 times slower by selecting the high-
est rank v3 as the initial pattern vertex than selecting the lowest
rank v1. Note that v2 has the similar performance to v1, because
there exists an edge (v2, v3) with order < for the v2 in PG1. The
gap is even larger on WikiTalk, which reaches about 285 times. The

clique pattern graph PG4 has the similar results. The gap is 4 times
on LiveJournal, while it is 106.4 times on WikiTalk. On the web
graph, WebGoogle, the initial pattern vertex of PG1 and PG4, has
the similar effects as on the social graph. The improvements are
8.4 and 14.6 times, for PG1 and PG4, respectively. Therefore it is
necessary to choose a good initial pattern vertex when enumerating
a certain pattern graph on real-world graphs. The deterministic rule
in Theorem 5 is effective for this task.

However, Figure 6(d) shows all the three initial pattern vertices
in PG1 have the similar performance on the random graph, and
for PG2, the gap is only about 1.6 times between the slowest and
fastest initial pattern vertexes. It indicates that the influence of ini-
tial pattern vertex is less significant on random graph than the one
on power-law graph, for the cycles and cliques. This is consistent
with previous analysis in Section 5.2.2.

7.4 Efficiency of the Light-Weight Edge Index
Next we present the results on the efficiency of the light-weight

edge index. With the help of the light-weight edge index, PSgL can
filter invalid partial subgraph instances early, and saves the com-
munication and memory costs.

Data
Graph PG

Gpsi#
w/ index

Gpsi#
w/o index

Pruning
Ratio

LiveJournal PG1(v1) 2.86 × 108 6.81 × 108 58.01%
PG4(v1) 9.93 × 109 OOM Unknown

UsPatent PG5(v1) 2.26 × 107 3.17 × 108 92.87%
PG5(v3, v4) 7.38 × 109 2.04 × 1010 63.89%

Table 2: Pruning Ratio of the Edge Index. PGi(vj) stands for the
number of Gpsi is counted during the expansion of vj for the PGi.

Table 2 only lists the online statistics for executing the pattern
graph PG1, PG4, PG5 on LiveJournal and UsPatent, as represen-
tatives due to the space constraint, as the other pattern graphs give
similar results. We notice that the pruning ratio can be as high as
92.87% during the expansion of v1 for the PG5 on UsPatent. With-
out the edge index, the 92.87% invalid partial subgraph instances
will cause heavy communication and memory consumption. On
LiveJournal, when running PG4 starting from v1 without the edge
index, the task fails with OutOfMemory4 (OOM for short) problem
because of the enormous invalid partial subgraph instances. Fur-

4using the terminology in Java to denote the error.
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Figure 7: Runtime Ratio among PSgL, Afrati and SGIA-MR

thermore, in the different iterations, the index has different pruning
ratio. It has small pruning ratio in the later iterations during which
the size of partial subgraph instances is closer to the result set.

In summary, if there exists the invalid partial subgraph instances,
the edge index can prune them efficiently and reduce the memory
and communication overhead.

7.5 Performance on Various Pattern Graphs
Now we evaluate the performance of PSgL on the real datasets

with various pattern graphs, PG1 to PG5. All the optimization
techniques discussed in Section 5 are used. We compare PSgL with
the MapReduce solutions ( i.e., Afrati [1] and SGIA-MR [24]). For
one input pair of pattern graph and data graph, the cost of each
solution is normalized to the cost of PSgL. The normalized cost is
called runtime ratio and is presented in figures. A runtime ratio
x for a solution A means the performance of A is x times slower
than PSgL’s performance. For the clarity of the figures, the ratios
exceed 100 times are not visualized. In addition, as the MapReduce
solutions cannot be finished in four hours for PG5, we did not show
the results in figures either, and the results of PG3 on LiveJournal
are omit for the same reason.

Figure 7 lists the runtime ratio between three solutions. We can
easily see from the figure, that PSgL significantly outperforms the
MapReduce solutions on the WikiTalk, WebGoogle and UsPatent.
On average, PSgL can achieve performance gains over the MapRe-
duce soultions around 90%. Especially, when executing PG4 on
UsPatent, the runtime ratio between PSgL and Afrati can be 225
(not visualized). The join operation makes the reducer operate s-
lowly. Besides the graph traversal advantage in PSgL, the online
distribution strategy helps PSgL avoid the serious imbalance and
achieve a good performance across various settings. In contrast,
the MapReduce solutions have varieties of performance across the
different datasets, and the two surpass each other interleaved. This
is because the distribution strategy of intermediate results in these
solutions follows a fixed scheme and the degree of the skewness for
each MapReduce solution changes sharply with different graphs.
For example, SGIA-MR spends 4213 seconds for PG1 on Wik-
iTalk and Afrati finishes in only 190 seconds. However, on Web-
Google, Afrati is about 1.6 times slower than SGIA-MR.

Furthermore, though, the speed up of PSgL on LiveJournal is
around 2 to 4 times across different pattern graphs, the absolute
saved time is significant. For example, when running PG2, PS-
gL finishes in 4302 seconds, while Afrati consumes 7291 seconds.
For PG5, even though, we assume the MapReduce solutions fin-
ish in four hours, the speed up of PSgL is around 3 to 14 times on
different data graphs.

7.6 Scalability on Large Graphs
To evaluate the scalability of our approach on large graphs, we

further conduct experiments on two large datasets, Twitter and Wiki-
pedia, and also compare with GraphChi [18] and PowerGraph [12].
GraphChi and PowerGraph are two state-of-the-art graph comput-
ing systems on a single node and in parallel, respectively. For
both methods, the latest C++ versions are used in the experiments.

Data
Graph

Pattern
Graph Afrati Power-

Graph(C++)
Graph-
Chi(C++) PSgL

Twitter PG1 4325min 2min 54min 12.5min
Wikipedia PG1 871s 36s 861s 125s

Table 3: Triangle Listing on Large Graphs
Meanwhile, we show the robustness of our proposal by comparing
with a one-hop index based solution on PowerGraph.

Table 3 shows the comparison results of triangle counting on
Wikipedia and Twitter, since triangle (PG1) is a very typical pat-
tern graph and attracts more attention in social network analysis.
We can see that PSgL achieves performance gains over the MapRe-
duce solution up to 97% on Twitter and 86% on Wikipedia. It sur-
passes GraphChi as well. However, compared with PowerGraph,
PSgL is about 4 to 6 times slower. One reason is that PowerGraph
is a heavily optimized graph-parallel execution engine [29]. Fur-
thermore, the triangle counting operation on PowerGraph is well
optimized via a one-hop neighborhood index maintained by hop-
scotch hashing [15].

By using the one-hop index technique, it is insufficient to enable
PowerGraph to solve a general pattern graph efficiently. We extend
the graph traversal based solution in PSgL to the PowerGraph. Un-
like the original PSgL, we manually choose a traversal order for the
general pattern graph, and let PowerGraph solve the subgraph list-
ing based on that order and prune the intermediate results via the
one-hop index. The traversal order is denoted by like “A->B->C”,
which means the algorithm first visits vertex “A”, then “B” and “C”
on the pattern graph. Furthermore, we eliminate the automorphism
of the pattern graph to guarantee each result is found once as well.

Data
Graph

Pattern
Graph

Traversal
Order Afrati Power-

Graph PSgL

WikiTalk PG2 1->2->3->4 4402s 48s 318s
WikiTalk PG3 2->3->4->1 13743s 100s 494s
WikiTalk PG3 1->2->3->4 13743s OOM 494s
WikiTalk PG4 1->2->3->4 1785s 127s 38s
LiveJournal PG4 1->2->3->4 2749s OOM 1330s

WebGoogle PG5
1->2->3->4
->5 >4h OOM 4232s

Table 4: General Pattern Graph Listing Comparison
Table 4 illustrates the performances of PSgL and PowerGraph

on general pattern graphs. For the simple pattern graph PG2, simi-
lar to the triangle PG1, PowerGraph can obtain better performance
with the help of one-hop index. While pattern graphs become com-
plicated, PowerGraph degrades because of the enormous invalid
intermediate results, and cannot handle general pattern graphs even
the data graph is small. For example, when executing PG4 on
WikiTalk, PowerGraph is 3.3 times slower than PSgL. The result is
even worse on LiveJournal, the task is failed with the OutOfMem-
ory (OOM) problem. This is because, without the global edge in-
dex, the algorithm is unable to use the connectivity except the one-
hop link to prune the invalid intermediate results, thus burdening
the memory and communication overhead. Moreover, unlike PSgL

5The performance is cited from [26].



where the distribution strategy dynamically chooses the traversal
order for each Gpsi, the fixed traversal order cannot achieve a bal-
anced distribution of intermediate results. When running PG5 on
PowerGraph, the imbalanced distribution leads to OOM on some n-
odes. Another important observation is, similar to the initial pattern
vertex selection in PSgL, the different fixed traversal orders heavily
affect the performance and it is difficult for a non-expert to figure
out a good traversal order for the general pattern graphs. For in-
stance, when executing PG3 with traversal order “2->3->4->1”, it
leads to better performance while the performance degrades signif-
icantly with the traversal order “1->2->3->4”. Because “1->2->3-
>4” makes the algorithm generate a large set of initial intermediate
results and causes the OOM issue.

In summary, PSgL is a subgraph listing framework to support
the general pattern graphs by addressing above problems via the
workload-aware distribution strategy, a cost model-based initial pat-
tern vertex selection method and the light weight edge index. The
experimental results show PSgL’s scalability and robustness with
respect to various pattern graph types and datasets.

7.7 Scalability on the Number of Workers
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Figure 8: Performance vs. Worker Number

Finally we demonstrate that PSgL has a graceful scalability with
the increasing number of workers. Figure 8 shows the performance
of running PG2 on the WikiTalk with the number of workers rais-
ing from 10 to 80. We notice that the real performance curve is
approximate to the ideal curve, which assumes the performance is
linear to the worker number. The runtime is decreased closely lin-
ear with respect to the worker number. For example, it is about
1691 seconds for running PG2 with 10 workers, while the cost is
reduced to 845 seconds when the workers is doubled. As the num-
ber of workers goes up, the improvement decreases slightly.

8. CONCLUSION
In this paper, we have proposed an efficient parallel solution,

called PSgL, to address the subgraph listing problem on large-scale
graphs. PSgL is a parallel iterative subgraph listing framework,
which is graph friendly and designed based on the basic graph op-
eration. Moreover, we introduced several optimization techniques
to balance the workload and reduce the size of intermediate result-
s, which can further enhance the performance of PSgL. Through
the comprehensive experimental study, we demonstrated that PSgL
outperforms the state-of-the-art solutions in general.
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